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A Stereoselective Total Synthesis of (+I-Pentalenene 
Goverdhan Mehta* and Kasibhatla Srinivas Rao 
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A short, stereoselect ive synthesis of triqu i nane sesq u iterpene hydrocarbon ( + )-pentalenene (4) from com mercial ly 
available 1,5-dimethylcyclo-octa-l,5-diene (5) involving a transannular cyclisation as the pivotal step is described. 

Angularly fused triquinane natural products e.g. ,  isocomene carbon pentalenene (4) , isolatedld from Streptomyces 
(l),la silphenene (2)  ,1b senoxydene (3) ,1c pentalenene (4)ld griseochromogenes has held special attraction due to its novel 
among many others,lef have received a great deal of attention biosynthetic origin3a and its role as the key precursor of the 
from synthetic chemists during the past few years due to their pentalenolactone family of an t ib io t ic~~3~ Scheme 1. From the 
unique molecular architecture, embellished with a variety of synthetic point of view, the challenge of pentalenene (4) 
methyl substituents.2 Among these the sesquiterpene hydro- resides in the efficient formation of the tricyclo[6.3.0.04~8]un- 
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decane framework and the generation of four contiguous 
asymmetric centres around the spiro carbon atom (C-8).4 We 
report here a new synthesis of (4) which employs a trans- 
annular C+-JC type of cyclisation within a bicyclo[6.3.0]unde- 
cane system as the key transformation to generate the angular 
triquinane framework.4d.5 Our synthesis is notable for its 
conceptual simplicity, brevity, and apparent generality 
(Scheme 2). 

Readily available 1,5-dimethylcyclo-octa-l,5-diene (5 )  on 
hydroboration-oxidation followed by pyridinium chlorochro- 
mate (PCC) oxidation furnished the enone (6) in good yield. 
Kinetically controlled allylation of the lithium enolate derived 
from (6) exclusively furnished the trans-(7) in keeping with the 
recent observation of Clark Still on similar systerns.6 Tsuji 
oxidation7 of (7)t proceeded uneventfully to give (f9.t At this 
stage, to ensure the correct relative stereochemistry at C-4 and 
C-9 in pentalenene (4), the dione (8) was subjected to base 
catalysed equilibration to furnish a 4 : 1 mixture of (9)t and 
(8),t respectively. The cis-dione (9) on exposure to sodium 
hydride underwent smooth aldol cyclisation to afford the 

t Compound (7): i.r. (neat) 1710, 1640 cm-1; 1H n.m.r. (CDC13, 100 
MHz): 6 6.12-5.44(1H,m), 5.44-5.16(1H,t), 5.16-4.84(2H,m), 
3.04-1.04(10H, series of m), 1.68(3H,br s), 0.96(3H,d); 13C n.m.r. 

36.0(2C), 33.0, 27.4, 23.4, 19.1; (8): i.r. (neat) 1700 cm-1; 1H n.m.r. 
(CDC13, 100 MHz): 6 5.36(1H,t), 3.16-2.36(4H,m), 2.36- 
1.84(4H,m), 2.15(3H,s), 1.6-1.12(2H,m), 1.69(3H,br s), 1.0(3H,d); 
13C n.m.r. (CDC13, 25.0 MHz): 6 218.9, 205.3, 136.2, 126.0, 51.0, 
45.2,41.7,35.5,32.9,29.9,27.1,23.8,19.1;(9):i.r.(neat)1700cm-1; 
'H n.m.r. (CDC13, 100 MHz): 6 5.28(1H,t), 3.24-1.0(10H, series of 
m), 2.0(3H,s), 1.68(3H,br s ) ,  0.88(3H,d); 13C n.m.r. (CDC13, 25.0 
MHz): 6217.6, 206.8, 135.3, 125.1,49.1,45.2,44.5, 33.8. 31.5,30.0, 
26.1,25.1, 17.6; (10): i.r. (neat) 1670,1595 cm-1; 1H n.m.r. (CDC13, 
100 MHz): 6 5.92(1H,br s), 5.32(1H,t), 3.12-1.2(10H, series of m), 
1.8(3H,br s), 1.1(3H,d); l3C n.m.r. (CDC13, 25.0 MHz): 6 208.5, 
192.3, 135.3, 128.8, 125.1, 44.0, 43.3, 38.1, 35.9, 35.2, 26.0, 25.0, 
21.8; (11): i.r. (neat) 1730 cm-l; 1H n.m.r. (CDCI3, 100 MHz): 6 
5.08(1H,br s), 3.28-1.12 (11H, series of m), 1.64(3H,br s), 
0.92(3H,d); 13C n.m.r. (CDC13, 25.0 MHz): 6 219.0. 144.0, 126.8, 
62.1,60.2,51.6,45.9,43.6,43.0,34.8,28.7,15.8,15.2; (12): i.r. (neat) 
2700, 1720 cm-1. 

(CDC13, 25.0 MHz): 6 216.9, 136.5, 135.2, 125.5, 116.6, 56.1, 41.0, 
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Scheme 2. Reagents and conditions: i ,  9-borabicyclo[3.3. llnonane, 
THF, 70%; ii, PCC-molecular sieves 4 A, CH2C12, 87%; iii, 
(Me3Si),NH-BunLi, CH,=CHCH,Br, -78 "C, THF, 75% ; iv, PdC12, 
CuCl, 02; N,N-dimethylformamide, 80% ; v, KOH-MeOH, 82% ; vi, 
NaH, THF, 70%; vii, BF3-Et,O, HC02H, 55%; viii, 
Ph3P+CH20MeC1--t-C5Hl,0-Na+-Et20; ix, 35% HC104-Et20, 
80% [from (ll)]; x, KH-MeI, THF, 0-10 "C, 63%; xi, N2H4, Na, 
(HOCH2CH2)20, (HOCH2)2, 33%. 

bicyclic enone (lo)? (80%) along with its C-4 epimer (20%). 
The key step now was the transannular cyclisation and after 
much exploratory work employing toluene-p-sulphonic acid, 
Nafion-H, trimethylsilyl trifluoromethanesulphonate, etc., we 
found that formic acid in the presence of BF3-diethyl ether 
effected the desired cyclisation to give the tricyclic ketone (11) 
in 55% isolated yield. The structure of ( l l ) ?  was confirmed by 
the presence of a cyclopentanone moiety (i.r.: 1730 cm-I) and 
a quaternary carbon centre (6 62.1, s) in the 13C n.m.r. 
spectrum. At this stage, we sought to convert (11) into 
pentalenene through direct geminal dimethylation with Reetz 
titanium reagent.* Reaction of (11) with Me2TiC12, provided a 
complex mixture of C14- and C15-alkenes and although 
g.c.-mass spectroscopic analysis indicated the presence of (4) 
(- lo%), it was preparatively unworkable. A more circuitous 
approach was therefore adopted. Wittig olefination of (11) 
with methoxymethyltriphenylphosphonium chloride and mild 
acidic hydrolysis of the product gave the CI4-aldehyde (12).t 
Methylation of (12) with KH-Me1 in tetrahydrofuran (THF) 
established the second quaternary carbon centre at C-6, and 
the resulting Cls-aldehyde (i.r.: 2700, 1720 cm-1; 1H n.m.r.: 6 
9.41, s) on Wolff-Kishner reduction led to (+)-pentalenene 
(4), which was identical (1H and 13C n.m.r.) with the natural 
product. 
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